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"I propose to investigate the question as to whether it is
possible for machinery to show intelligent behavior.” -

Intelligent Machinery (1948),
Alan Turing
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Deep Learning Catches On in
New Industries, from Fashion
to Finance

The machine-learning technigue known as deep learning, which has
shownimpressive results in voice and image recognition, is finding
new applications.

By Will Knight on May 31, 2015
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ANNs used in "Deep Learning” algorithms
are not Neurobiologically Plausible

Biologically implausible learning rules.

. Require much larger training data sets
than brains.
. Have non-biological fragilities (eg dusty

cars can be classified as non-cars).

. Lack feedback and dynamics
. Use much more power (human brain =

12W, Pentium chip ~30-100W)



Deep ANNS are essentially Tabula Rasa learners.
Biological brains have species-specific, genetically
encoded circuiTr'y that have evolved over >108 years
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“The Grand Question, which every naturalist ought
to have before him, when dissecting a whale, or
classifying a mite, a fungus, or an infusorian is

‘What are the laws of life’ ?”

Charles Darwin, Notebook B



“.. when we contemplate every complex structure and
instinct as the summing up of many contrivances,
each useful to the possessor, nearly the same way as when
we look at any great mechanical invention as the summing
up of the labor, the experience, the reason, and even
the blunders of numerous workmen; when we thus view
each organic being, how much more interesting,
I speak from experience, will the study of natural history
becomel!

Charles Darwin, The Origin of Species



Laws of life (intelligence etc) = Laws of design (“engineering theories”)

Engineering theories: 3C’s (communication, computation, control,
statistics a.k.a. machine learning,
in network/distributed settings)

Symmetry principles <——> Invariance of interface (black box models)
Universality (physics) <—— Universality (engineering; eg Universal Turing Model)



An example of "design”/engineering theory
addressing neurobiological phenomena

Chomsky, Noam. "On certain formal properties of grammars."
Information and control 2.2 (1959): 137-167.

Chomsky, Noam. Knowledge of language: Its nature, origin, and use.
Greenwood Publishing Group, 1986.

X | Turing Machines
recursively enumerable

context-sensitive

context-free , Human Language Syntax (?)

Chomsky Hierarchy of Formal Grammars (and associated automata)




We can potentially discover the principles of intelligent machines
by studying real brain circuits

However after more than a century of intensive study, our
knowledge of brain circuitry is still highly incomplete - hence the
recent renaissance in neuroanatomical research, enabled by
automation and "big data”.
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Organized a series of meetings at the Banbury Center (CSHL) (2007,2008)

Leading to a proposal for systematic brain-wide mapping of connectivity at a
mesoscopic scale in model organisms, starting with Mouse.

~

PLoS Computational Biology: A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in M
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What is the Mesoscopic Scale in Neuroanatomy?












The mesoscopic scale of
analysis of brain
architecture may be
defined as the transitional
point between a
microscopic scale at which
individual variation is
prominent and the more
macroscopic level where a
more stable, species-
typical neural architecture
is observed.

P.P.Mitra, The Circuit Architecture of
Whole Brains at the Mesoscopic Scale,
Neuron (2014), http://dx.doi.org/
10.1016/ j.neuron.2014.08.055
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Tree-Architecture of Individual Neurons
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Individual Neurons can form branched trees spanning the brain
(e.g: Single Pyramidal neuron tracings, rat Piriform cortex,

J Neurosci. 2000 Sep 15;20(18):6974-82.

Johnson DM, Illig KR, Behan M, Haberly LB.)



Approach: Scaling Up Classical Neuroanatomy

Localized injections of neuronal tracer
substances to label neurons

1. Anterograde tracers: "Soma -> Axon
terminals”

2. Retrograde tracers: "Axon terminals ->
Soma”

- Systematically apply to whole brain
+ Automate, digitize, analyze.



Anterograde + Retrograde labelling allows
mapping of local inputs + outputs of a region
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Whole Brain Reconstructions  AAV injection in MOd

AAV injected in
MOp

MOp, ipsi (injected)
MOp, contra
STRd, ipsi

CC, contra

GP, ipsi

TH, ipsi

SSp, ipsi

MB, ipsi

SC, ipsi

10 py, ipSi

—

Vo 0 NO O bk W







Anterograde + Retrograde labelling allows
mapping of local inputs + outputs of a region
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Grid-based ("Shotgun”) approach to whole
brain circuit mapping

ooy Grid ~1000 um

Total grid points
N = 380

Cortex (iso/paleo/
archi)

N =220
Other
N =160

Algorithmic choice of coordinates for injections into the brain: encoding neuroanatomical atlas on a grid.
(Grange et al. 2011)



MBA Pipeline

Histological Processing > Image Processing & Analysis

tracer Internal Storage | | Public Web Portal &= STEp 4
injection reconstruction
v . rawimages * registered sections & annotation
sectionin (lossless JP2) (lossy JP2) . t
8 ) . e fly-through video STEP 3
v A . anlnotated rjconjtr. <— labeled cell
e volume-rendere :
histochemistr whole brain GEtection 1
{7 * metadata
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imaging N deformable
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cropping & ualit
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compression | | control
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Key enabler: consumer electronics driven
efficiency in the semiconductor industry,
a.k.a. Moore's law (falling storage costs)

1 Mouse brain @1mu (LM) ~1TB

1000 Mouse brains @1mu ~1PB

1 Human brain @1mu ~1PB

1 Mouse brain @10nm (EM) ~ 1000PB

1TB in hard disk storage c. 1990 (inception of
Decade of the Brain) 10M$

Project data store currently 1PB (would have
cost 10B$ in 1990).



a-nat-o-my

Origin
OLD FRENCH
anatomie
GREEK
anatomy
ana- P e e
up LATE LATIN o T =
anatomia
GREEK GREEK
temnein tomia
to cut cutting

late Middle English: from Old French anatomie or late Latin anatomia, from Greek, from
ana- ‘up’ + tomia ‘cutting’ (from temnein ‘to cut’).






MRI

Tape-transfer cut Coronal Nissls
registered + virtually resectioned




Registered Nissl Stack, 3D rendering showing surface vessels
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Image data

Specimen size: ~1 centimeter
Image resolution: 0.46 microns
Section Spacing: 20 microns
Ordering: Alternate Nissl

Raw data: ~1TeraByte/brain

# scanned: ~2000

Data size: Over 1PB. A
#sections: ~1 million (preserved 8
on slide). k-

Alternate Cytoarchitecture




Mouse Connectivity Mapping: Project Status

Breakdown by tracer

AAV N =761 total

(527
brains)
>90% complete;
Analysis ongoing)

BDA N =124 total
(Discontinued)

RV N=121 total

CTB N =200 total
-l (Being completed)
















DATA PORTAL

HTTP://MOUSE.BRAINARCHITECTURE.ORG



(®) MOUSE BRAIN ARCHITECTURE

m INJECTIONS: 3D VIEW INJECTIONS: LIST VIEW AUXILIARY DATASETS DOCUMENTATION EDUCATIONAL UNITS

3D Viewer

GET STARTED: Select your injection point below by clicking on the button to the

right. Once an injection point is selected you will be brought back up to the 3D

navga‘non. Click on the injection point to see a list of brains which will appear in A AT T T
the right hand column.

~850 tracer injected brains

~500 sections per brain
~ 0.5M high-resolution sections

MouseBrain_0788 F

Inj Region : Primary motor area

Coordinates : (1.70 mm, 0.24 mm, 1.10 mm)

Tracer : AAV2/1 CAG

LEARN MORE VIEW IMAGE SECTION GALLERY PLAY VIDEO

MouseBrain_0945 F

Inj Region : Primary motor area

Coordinates : (1.10 mm, -0.38 mm, 1.00 mm)
Tracer : AAV2/1 CAG

Brains Featured in this Area

LEARN MORE VIEW IMAGE SECTION GALLERY PLAY VIDEO



Data Analysis (Ongoing)

Automatic detection of labelled cells and
processes in the whole brain; Estimation of
cell/process density

Construction of a high-resolution Nissl-based
reference atlas registered to postmortem (‘in
vivo'-like) MR scans

Comparison with literature

Inference of collateral branching patterns




Software Tools

Tracer Detection 1.

Labeled Cell detection:
graph based segmentation

Cells retrogradely labeled with CTB in nuclei of the dorsal
thalamus. A) LD and (B) RE

These neurons project to the site of the injection in the
association cortex (PTLp) ~ 1 mm caudal to this coronal

section)




Software Tools

Tracer Detection 2.

Labeled Process detection:
contrast enhancement for
elongated structures, followed
by gray-scale skeletonization

Cells in the secondary somatosensory
cortex (SSs) expressing recombinant
GFP in their dendrites & soma were
infected with the retrograde virus
tracer RV at their axon terminals that
project to the primary somatosensory
cortex (SSp; ~1.5 mm rostral to the
coronal section shown), the site of the
RV injection .




Counting Cells (Estimating Spatial Densities). Example: Counting GABAergic Cells
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Count in section from 2D cell detection

o We get 1-33 x10”3 /mm”3 in cortex
(location dependent)

o Meyer et. al. [PNAS 108, 16807
(2011)] 3.5-14 x 10”3 /mm”3 in Ssp
in Rat



Atlas “mapping”

The “where problem”. ' .
B the b t feren ~ | \
ringing the brain images to a common refere ce. @ @ | \

[ R P P

Addressed by taking structural
clues from the alternate Nissl series

Natural density clusters of cell-bodies




Ongoing analysis example: Skeletonization of projection data using
Computational
Topology

Collaboration with
Yusu Wang, OSU

1-Stable manifold
(collection of lines
connecting maxima

to saddles, ie mountain
ridges separating
neighboring valleys)
Computed using the
Discrete Morse Complex
(combinatorial algorithm
with ~linear time) +
Persistence based
simplification




COMPARING WITH LITERATURE



MouseBrain_1035 HC

MouseBrain_1217 F

Data Validation: Manual annotation
(Courtesy Mihail Bota, USC)

78

83

x:0.83
y:-1.05 CTB
z:0.68

Primary motor area

x:2.20
Primary motor area y:1.70 AAV
z:1.75

RSPv ++ ++ Ipsi: a group of labeled neurons in the RSPy, close to the cing. Contra: same pattern, but weaker.

RSPd e ++ Ipsi: strong labeling, especially towards the PTLp. Contra: moderate labeling, same pattern.

PTLp R Ipsi: moderate/strong labeling. Contra: no discernible labeling.

SSp o + Ipsi: strong labeling, in a general column-like pattern. Contra: a similar columnar pattern, but much weaker.

AUDd ++ Ipsi: labeling of the entire cortex from the AUDd to TEa. The labeled neurons are in the deep layers. Contra: no labeling, -
AUDv ++ Ipsi: labeling of the entire cortex from the AUDd to TEa. The labeled neurons are in the deep layers. Contra: no labeling, -
AUDp R Ipsi: labeling of the entire cortex from the AUDd to TEa. The labeled neurons are in the deep layers. Contra: no labeling,
TEa ++ + Ipsi: labeling of the entire cortex from the AUDd to TEa. The labeled neurons are in the deep layers. Contra: no labeling,
ECT + + Ipsi: labeling of the entire cortex from the AUDd to TEa. The labeled neurons are in the deep layers. Contra: no labeling,
RSPv ++ + Ipsi: weak/moderate labeling, stopping exactly where the SUBd starts. Contra: very weak labeling, 2-3 labeled neurons.
RSPd e ++ Ipsi: clear band of labeled neurons in layer Ill. Also in the deeper layers. Moderate/strong labeling. Contra: same labeling
RSPagl ++ Ipsi: weak-moderate labeling at best. Contra: no label.

VISam + Ipsi: weak-moderate labeling at best. The neurons tend to be in layer V. Contra: no label.

ViSal + Ipsi: weak-moderate labeling at best. The neurons tend to be in layer V. Contra: no label.

PTLp + Ipsi: weak-moderate labeling at best. The neurons tend to be in layer V. Contra: no label.

AUDv + Ipsi: weak-moderate labeling at best. The neurons tend to be in layer V. Contra: no label.

TEa + + Ipsi: weak labeling. Contra: maybe some weakly labeled neurons




Manual annotation of 2 injections (Mihail Bota, USC)

Only “sensory-motor' cortical regions shown, superposed on a network
in Rat (BAMS data, grey)

’//‘w'ﬂ 3
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(1) CTB (retrograde) in primary motor cortex (Mop) — shown by incoming arrows.
(2) AAV (anterograde) in in primary motor cortex ( Mop) — shown by outgoing arrows.



AIBS Cortex Connectivity Matrix BAMS Cortex Connectivity Matrix

B

45

“False Negatives” (16%) “False Positives” (14%)



Comparing regional output and input patterns of AIBS, BAMS
matrices.

Null hypothesis — projections randomly chosen (preserving the
distribution of weights)

* For outgoing projections: Null hypothesis of randomly
chosen projections cannot be rejected for:

— 95% level: 6/59 regions (10%)
« 'AlV' 'ENTm' 'GU' 'ILA" 'ORBvI' 'PRE'

— 99% level: 11/59 regions (19%)

 'ACAV' 'Alv' 'ENTm' 'EPd" 'GU' 'ILA" 'NLOT' 'ORBI
'ORBvI'" 'PRE' 'VISpl'

* For incoming projections:
— 95% level: 2/59 regions (3%)
* 'COAa' 'PRE'

— 99% level: 14/59 regions (24%)

* 'ACAV' 'Alp' 'CA2" 'COAa" 'DG' 'ILA' 'NLOT'" 'ORBI' 'PAR
'PERI' 'POST" 'PRE' 'SSp' 'TEaQ'



WHOLE BRAIN CIRCUIT MAPPING IN
OTHER SPECIES:

MARMOSET (RIKEN, JAPAN)



Lab/pipeline setup complete; Personnel hired; 7 Marmosets processed so
RIKEN Marmoset Brain Architecture far; on track to process 25 by March 2016

Lab: Copy of CSHL MBA lab (part of Japan Brain Science Initiative)

Collaboration with Hideyuki Okano, Atsushi Iriki, Erica Sasaki

4-5 injections/brain Brainwide

(2 color AAV/Anterogra Injection

(2 color retrograde fluorescent
+ 1 DAB/Brightfield CTB)

In 2015 project year plan to inject
25 Marmosets x 4-5 injections each
= 100-125 injections

grid



1.
“Thermodynamics of Big Data”

Analysis of Algorithmic Phase Transitions in
Compressed Sensing/Sparse Regression



NSF INSPIRE: Zero-One Laws at the Interface Between
Physics, Engineering and Biology

Partha Mitra
Bassam Bamieh (UCSB)
Anirvan Sengupta (Rutgers)



Melting

Liquid

Pressure Solid

Phase transitions
in statistical physics ..

Sublimination

Temperature

Typical solid-liquid-gas phase diagram showing sharp boundaries

C C C

A

T : T . T

Jumps/divergences in thermodynamic quantities at transition points



Phase transitions in Statistical Physics

Non-analytic behavior of the Free Energy in the
arge-N limit

sing model 1924

Llandau (Mean Field) theory 1937

Onsager solution (2D Ising model) 1944

Renormalization group theory: Kadanoff (1966);
Wilson (1971); Fisher (1972)

Spin glasses; Replicas; Edwards, Anderson (1975)



Phase transitions in Theoretical Engineering
(Communications, Computation, Controls, Machine Learning)

* Consequence of large numbers of variables

e Shannon (sharp threshold for error correcting
codes at rate = channel capacity) 1948

 Computation: k-SAT (satisfiability problems)
“easy-hard-easy” phase transitions for the
average case ~1990s [relevant for P vs NP]

 Machine learning examples ~1990s
e Communication networks ~1990s
e Distributed control theory ~ more recent



Communication Networks Adv. Appl. Prob. 34, 58-84 (2002)

Printed in Northern Ireland
© Applied Probability Trust 2002

MARKOV RANDOM FIELD MODELS OF
MULTICASTING IN TREE NETWORKS

KAVITA RAMANAN * ** AND

ANIRVAN SENGUPTA,* Bell Laboratories, Lucent Technologies
ILZE ZIEDINS,*** University of Auckland

PARTHA MITRA,* Bell Laboratories, Lucent Technologies

Abstract

In this paper, we analyse a model of a regular tree loss network that supports two types
of calls: unicast calls that require unit capacity on a single link, and multicast calls that
require unit capacity on every link emanating from a node. We study the behaviour
of the distribution of calls in the core of a large network that has uniform unicast and
multicast arrival rates. At sufficiently high multicast call arrival rates the network exhibits
a ‘phase transition’, leading to unfairness due to spatial variation in the multicast blocking
probabilities. We study the dependence of the phase transition on unicast arrival rates,




Distributed Controls

Bamieh, Bassam, Mihailo R. Jovanovic, Partha Mitra, and Stacy Patterson.
"Coherence in large-scale networks: Dimension-dependent limitations of local feedback."
Automatic Control, IEEE Transactions on 57, no. 9 (2012): 2235-2249.

Vehicular Platoons

Automated control of each venhicle, tight spacing at highway speeds

@ Is it enough to look at neighbors? What to broadcast to all?
@ What happens in the presence of disturbances?

@ How does performance scale with size?

@ Are there any fundamental limitations?



Machine Learning

Ramezanali, Mohammad, Partha P. Mitra, and Anirvan M. Sengupta.

"The cavity method for phase transitions in sparse reconstruction algorithms.”
arXiv preprint arXiv:1501.03194 (2015).

"Critical behavior and universality classes for an algorithmic phase transition
in sparse reconstruction.” arXiv preprint arXiv:1509.08995 (2015).

Erlich, Yaniv, Assaf Gordon, Michael Brand, Gregory J. Hannon, and Partha P. Mitra.
"Compressed genotyping." Information Theory, IEEE Transactions on 56, no. 2
(2010): 706-723.



Motivation/Relevance to brains

* Big data sets (eg large neuroanatomical data
cubes) -> to understand the data analysis

methods.

 “Deep networks” etc: theoretically poorly
understood, need analytical tools.

 Why does the brain have so many neurons?

— Is the brain solving “big data” problems?

— Does the micro-network architecture involve
phase transition phenomena in interesting ways?



Case Study:
Thresholding parameters in Multivariate Regression
(especially when # parameters > # samples)

e Y=HX+n
* Classical method:

— Minimize MSE: X = argmin, |Y-Hx|2=H"Y, where
H” is the pseudoinverse of H

— Keep only the largest, statistically significant
regressors: a hard threshold: X = Th(HY)

— Threshold determined e.g. by computing F-ratio
test for residuals (variety of procedures available).



A popular current approach:
Regression with sparsity inducing penalties

Basis Pursuit (Chen, Donoho, Saunders 1999; Tibshirani 1996)
— X=argmin, |Y-Hx|?+ A|x|

Can be regarded as convex relaxation of non-convex, NP hard
problem with penalty = number of non-zero components.

Guarantees recovery of correct solution for zero noise, for
sufficiently sparse vectors, in the limit A->0.

Solved efficiently using linear programming.

“Good” and “Bad” phases (recovery possible/not possible)
separated by phase transition boundary with analytically known
form (Donoho 2006)

History: Prony’s method for recovering multiple sinusoids (1795).
L1 minimization for sparse frequency estimation (Logan, 1965)



Y=HX

Y : m-dimensional measurement vector

H: m x N dimensional (known) design matrix

X : N-dimensional sparse parameter vector,
with only s non-zero entries

Sparsity parameter p =s/N
Undersampling parameter oo = m/N

Combinatorial algorithm recovers if s<m (p < a)
Transition line for the combinatorial (exponentially
costly) algorithm is the diagonal line p =«



More Measurements ->

4

1.0

(0.8

--_l-___-

0.6

0.4

--4-_—-L

Recovery using L1

Recovery not
Possible (BAD)

—
- -
—
—
—
-—
-—

Theoretical Phase Boundary
p~af(2log(l/a))
a~ p(12+ 8log(1/p))

(GOOD)
Combinatorial
recovery
(bad)--~

,/
7
7
/7
/7
/
0.2 0.1

<- More Sparse

0.6 (0.8

Less Sparse ->

1.0



Other algorithms exist ...

What are the phase transition boundaries?
Universality classes?
Not well understood —> part of our motivation.

L1+ L2 penalized regression (Elastic Net)

— X=argmin, |Y-Hx|2+ A, |x|+A, | x]?

* |terative hard thresholding
— X,,.=Th(X_ + H*(y-Hxn) )



N=1000, s=20

Algorithmic Phase
Boundaries Differ:
(have tradeoffs)

+1 sparse vectors
(Basis pursuit better)
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Taken from “A Mathematical
Introduction to Compressed
Sensing” by Foucart and Rauhut
P.7



New Results

New derivation of Mean Field Equations using Cavity method.

Phase transition curve for Elastic Net (differs from Basis Pursuit
curve)

Non-trivial exponents obtained for Basis Pursuit
— MSE(Basis Pursuit) ~ A*3 On the phase transition line
— MSE(Elastic Net) ~ A (on the phase transition line)

Basis Pursuit and Elastic Net exponents are different (existence of
different universality classes)

Exponents depend on behavior of probability distribution of
parameters near origin.

MSE shows minimum at non-zero A for noise>0.

Formulae for matrices with correlated entries.



Mean Field Equations:
Single Variable Optimization with
Stochastic Parameters + Self Consistency conditions

1
2aeﬁ.

a=) lag]y e
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For the finite noise case (Basis Pursuit),
MSE shows a minimum at A ~ (Noise Variance)%/3

(Model selection criterion)
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